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Solutions of the problems of counterflow and direct-flow heating of metal constructed on the solutions (ob-
tained by the authors) of the corresponding nonlinear boundary-value heat-conduction problems are presented.
An example illustrating the acceptable accuracy of the procedure proposed is given.

Introduction. The area of industrial heaters for heat and thermal treatment of ingots, billets, and parts is
highly diverse. It includes soaking pits, chamber and continuous furnaces (pusher-type, mechanized-hearth, and ring
ones), annealing and heat-treating furnaces, drying ovens, etc. All these devices differ in structure, purpose, and prin-
ciple of operation (first of all, the type and model of heat exchange). The problem of resources and fuel saving, rais-
ing the capacity, and improving the quality of heating (drying) is crucial for the whole variety of heat-generating units.
Mathematical modeling of the thermal processes in furnaces is one line of attack of this problem.

As applied to chamber-type furnaces, quite a large set of adequate procedures for calculating their thermal
performance is already available in metallurgical heat engineering. A different situation arises with the theory and prac-
tice of continuous furnaces employing the modes of direct-flow and counterflow heat exchange. In heat exchange of a
material and a gas moving in opposition (concurrently), the temperatures of both agents change in close interdepend-
ence; one can establish it only by solving the corresponding boundary-value problem. The temperature of the heat-
transfer agent (gas) is unknown in this problem, which requires that an additional boundary condition in the form of
a heat-balance equation be introduced into the mathematical heat-conduction problem. This complication of the mathe-
matical model substantially slows down the progress of the general technical theory of counterflow and direct-flow
heat exchange.

Counterflow Heating of Thermally Massive Bodies with Variable Thermophysical Characteristics (by
Radiation and Convection Simultaneously). The first effort to analytically describe the counterflow (direct-flow) heat
exchange of thermally massive ingots under thermal radiation was made by A. V. Kavaderov as early as the midtwen-
tieth century [1, 2]. The solutions obtained were based on two auxiliary functions determined by special tables that
were composed using an analog computer — a hydrostatic integrator of D. V. Budrin’s system.

A substantial breakthrough in investigations of combined counterflow radiative-convective heat exchange has
been carried out by V. I. Timoshpol’skii, Yu. S. Postol’nik, Yu. A. Samoilovich, and others [3, 4], developed more
comprehensively in [5, 6]. The only drawback of the solutions given in these works is that the thermophysical prop-
erties of a metal are taken to be constant, which can cause errors in calculations.

Developing the solutions obtained, the authors of the present work have found analytical solutions of the non-
linear boundary-value problem of heat conduction of thermosensitive massive bodies under combined (radiative-convec-
tive) counterflow heat exchange.

The mathematical model has the form
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θ (ρ, 0) = θ0 = θ′ = const ,   θg (0) − θg′′ = 1 , (5)

where we have introduced the dimensionless quantities
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The earlier investigations [7] have shown that the variability of the thermal conductivity λ(T) exerts the most
substantial influence on the conductive process. In this case in thermal calculations, one usually takes (see, e.g., [8, 9])
the function λ(T) to be linear and the remaining thermophysical characteristics to be constant, i.e., 

λ (T) = λ0 + ελT = λ0 
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which has been taken in the mathematical model (1)–(6).
The widely used [10] thermal-layer model has been adopted as the organizer method of solution of the non-

linear boundary-value heat-conduction problem (1)–(6) formulated, whereas the well-known method of equivalent
sources of Yu. S. Postol’nik [7–11] has been used for direct realization of the process of solution; this method showed
itself well in solving highly diverse linear and nonlinear heat-conduction problems and was further developed theoreti-
cally and applied to the investigation of high-temperature processes [4, 14, 15]. Also, it was tested earlier in linear
counterflow problems [16, 17].

In the first (inertial) step (0 ≤ τ≤ τ0, β(τ) ≤ρ ≤ 1), the solution obtained has the form

θ1 (ρ, τ) = θ′ + ∆θ1 (τ) [ρ − β (τ)]2 ⁄ l
2
 (τ) , (7)

where ∆θ(τ) = θ1s(τ) − θ′ is the temperature difference over the thickness l(τ) = 1 − β(τ) of the warmed-up (thermal)
layer;

l (τ) = √6 (1 + m) (1 + ελθ′) τ  ,   τ0 = [6 (1 + m) (1 + ελθ′)]
−1

 ; (8)

∆θ1 (τ) = τ ⁄ l (τ) = √τ ⁄ [6 (1 + m) (1 + ελθ′)]  ,   ∆θ1
0
 = τ0 ; (9)
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In the second (ordered) step (τ0 ≤ τ ≤ τ∗, 0 ≤ ρ ≤ 1), we have
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The gas temperature θ2g(τ) is determined by the transcendental equation
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2
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where
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Knowing the gas temperature and the metal-surface temperature θ2s(τ), we find the solution of the algebraic
equation
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Obtaining the values of the temperatures θ2s(τ) and θ2g(τ), by solution of (11) we compute the temperature of the cen-

ter θ2center(τ), the temperature difference ∆θ2(τ) = θ2s(τ) − θ2center(τ), and the average (over the volume) temperature

θ2(τ) = θ2s(τ) − 
2

3 + m
 ∆θ2(τ).

The time of completion of heating τ∗ is determined by solution of (13) under the assumption that θ2s(τ∗) =
θ2s
∗  = ηθ2g

∗ . Substituting θ2s
∗  = ηθ2g

∗  into (15) and (16), we arrive at an algebraic equation similar to (15) but for θ2g
∗

now. The new coefficients have the form
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1 + 

ζ

h∗
 
1 − η

1 − η4
 − 
εληθenv

1 − nη




 ,   a0g = 

h∗θenv

1 − ηn
 ,   h∗ = h (1 − nη) ⁄ [n (1 − η4)] . (17)

Knowing θ2g
∗ , we determine, from expressions (13) and (14), the heating time τ∗:

τ∗ = τ0 + k2
2
 (Φg

∗
 − Φg

0) ⁄ [4 (1 + m) k1 Sk θenv] . (18)
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Thus, the formulated nonlinear boundary-value problem of counterflow heating of thermally massive bodies of basic
(classical) geometry is completely solved.

To evaluate the adequacy of the constructed analytical model to the results of analog and numerical modeling
we have checked the numerical example borrowed from [2]. The calculation results confirmed the data of the previous
investigations [6, 18] and showed that calculations by the method of equivalent sources and the data of the analog
computer [2] were in complete agreement, in practice. The same high convergence of the results has also been con-
firmed [19] in comparison with numerical (finite-difference) methods.

Solution of the Problem of Heating of Prismatic Ingots and Billets in the Counterflow Regime (Two-Di-
mensional Model). Continuous walking-beam and walking-hearth furnaces in which heated ingots and billets are ar-
ranged with a gap have enjoyed wide application in the metallurgical industry recently. When the processes of heating
of metal in such furnaces are modeled, it becomes necessary to solve the counterflow boundary-value problem, which
enables one to improve the accuracy of the results obtained [20, 21].

As a continuation of the earlier investigations [4, 22], we have obtained below the solution of the problem of
heat conduction and thermoelasticity in heating of prismatic billets in the counterflow regime. The mathematical model
of the heating has the form

a 
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∂T

∂t
 ; (19)
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∂xi



xi=Hi

 = α [Tg (t) − T (x1, x2, t)]
xi=Hi

 ,   
∂T
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dVg (τ)
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 ; (21)

T (x1, x2, 0) = T ′ = T0 = const ,   Tg (0) = Tg
′′ = const . (22)

To allow for radiative-convective heat exchange and to minimize difficulties associated with obtaining the so-
lution of the heat-conduction problem with nonlinear boundary conditions of the third kind we have introduced the
total heat-transfer coefficient α = αc + αr, where αr = σv(Tg + Ts)(Tg

2 + Ts
2). Passing to dimensionless quantities
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∂θg (τ)
∂τ

 = Bi (τ) [θg (τ) − θ
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dVg (τ)

dτ
 ⁄ Vg (τ) ; (26)

θ (ξ1, ξ2, 0) = θ′ = θ0 = 0 ,   θg (0) = θg′′ = 1 . (27) 

Under the assumption that the gas flow rate changes discretely, the second term in Eq. (26) vanishes and the
change in the flow rate of flue gases is allowed for by the ratio of water equivalents [23, 24]. Allowing for the tran-
sient character of the first (inertial) step, we consider the second (ordered) step of heating. In accordance with this, we
replace the initial conditions in the mathematical model (23)–(27) by the following conditions:

θ2 (ξ1, ξ2, τ)
ξ1=0

ξ2=0

 = θcenter (τ0) = 0 ,   θg (τ0) = θg′′ = 1 . (28)

The time of warming-up of the prism τ0 can be determined from the formula
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 ,

(29)

where τ0i = 1 ⁄ 6 is the time of symmetric warming-up of an unbounded plate of thickness 2H along the ith coordinate.
For a square prism, formula (29) yields τ0 = 0.083. The solution of problem (23)–(27) in a regular heating step has
the form
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With the aim of identifying the solution obtained we compared the calculated data to the results of full-scale
experiment. The balance relation (21) is replaced by the equation

at   t ≤ t1   Tg = const = Tg
′′ = 950

o
C ;

at   t > t1   Vg (τ) cg 
∂Tg

∂t
 = α (t) [Tg (t) − T

__
s (t)] 2A − cg (Tcomb − Tg (t)) 





dVg (τ)
dt





and accordingly Eq. (26), in dimensionless  form, appears as

at   τ ≤ τ1   θg = θ (τ0) = θg
′′ = 1 ;

at   τ > τ1   
∂θg

∂τ
 = Bi (τ) [θg (τ) − θ

__
s (τ)] N (τ) − (θcomb − θg) 

dVg (τ)
dτ

 ⁄ Vg (τ) ,

where t1 and τ1 are respectively the dimensional and dimensionless time of holding of a billet in the beginning of the
continuous zone.

Another feature of the model developed is that the cross section of the heated billet is taken to be square,
which has been reflected in the formula for the temperature field (30). Therefore, in comparing with experimental
data (billet cross section 250 × 300 mm), we have used an "equivalent square" cross section equal to 274 × 274
mm in area.

In calculation of the heating of a square (prismatic) billet with an equivalent cross section of 0.274 × 0.274
mm and of length 5.3 m in the 850-mill furnace, we took the following initial data: heat capacity of the metal cm =
650 J ⁄ (kg⋅K), thermal conductivity λ = 35 W ⁄ (m⋅K), thermal diffusivity a = 6.9⋅10−6 m2 ⁄ sec, and heat capacity of the
combustion products c

_
 = 1300 J ⁄ (m3⋅K). The flow rate of natural gas and air was taken from the readings of regular

meters during the experiment. The water equivalent, from formula (23), is N = 1.6.
Figure 1 compares the temperature field of the billet and the temperature of the heat-transfer agent (30) and

(31) to experimental data. The value of the total heat-transfer coefficient was taken according to [25] where the con-
vective component was within 40–60 W ⁄ (m2⋅K). It is clear from the figure that the disagreement is no higher than 4%
even in the zone of phase transitions (metal temperature of the order of 700–750oC).

Thus, the solution obtained can be used for determination of the thermally stressed state of prismatic billets
in heating with the aim of developing resource-saving regimes.

Direct-Flow Convective Heating. Industrial units operating on the principle of direct-flow heat exchange are
of particular interest in engineering calculations in certain cases. Among these units are, first of all, heat exchangers of

Fig. 1. Comparison of the experimental values of the temperatures of the gas
(1), the surface (2), and center of a billet (3) to the calculated data on the de-
veloped mathematical model of counterflow heat exchange: a) modeling re-
sults; b) experiment. T, oC; τ, min.
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the metallurgical and machine-construction industries that operate with high-temperature waste gases and employ (to-
tally or partially) this mode of heat exchange because of the hazard of failure of structures due to the intense oxida-
tion and decarbonization, and furnaces of high-speed heating of metal.

In mathematical modeling of direct-flow heat exchange, we consider the corresponding problem in the follow-
ing formulation [26]:

1

ρm = 
∂

∂ρ
 



ρm

 
∂θ

∂ρ




 = 
∂θ

∂τ
 ; (32)

∂θ
∂ρ
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dθg

dτ
 = − Bi [θg (τ) − θs (τ)] nm ;

(34)

θ (ρ, 0) = θ0 = 0 ,   θg (0) = θg
0
 = 1 . (35)

In the inertial step (0 ≤ τ ≤ τ0), just as in [27, 28], we use the worked-out solution of the method of equivalent sources [7]

θ1 (ρ, τ) = 
θg1 (τ) Bi

[2 + Bi l (t)] l (τ)
 [ρ − β (t)]2

 ,   β (τ) ≤ ρ ≤ 1 , (36)

where the thickness l(τ) = 1 − β(τ) of the thermal layer in [27] is represented by the formula

l (τ) = √6 (1 + m) kτ  ,   k = (3 + 2Bi) ⁄ (3 + Bi) . (37)

The temperature gas function is

θg1 (τ) = exp 
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l (τ) − 

2
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Bi l (τ)
2












 , (38)

where

M = 
2n
3k

 .
(39)

For τ = τ0 = (3 + Bi) ⁄ [6(1 + m)(3 + 2Bi)], when the warming-up step is completed, we have l(τ0) = 1; the
temperatures of the body and the gas are  determined by the expressions

θ1 (ρ, τ0) = θ1
0
 (ρ) = 

θg1
0

Bi

2 + Bi
 ρ2

 ,
(40)

θg1 (τ0) = θg1
0

 = exp 
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1 − 

2
Bi

 ln 



1 + 

Bi
2












 . (41)

In the ordered step of heating (τ ≥ τ0), we have obtained the following solutions:
the temperature of the heat-transfer agent is
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θg2 (τ) = θg1
0

 

1 − D [1 − Φ (τ)]


 , (42)

where

Φ (τ) = exp [− µ (τ − τ0)] ;   µ = 
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the temperature field of the metal is

θ2 (ρ, τ) = θg1
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Bi
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 Φ (τ)




 . (44)

Setting ρ = 1 and ρ = 0 in (44), we obtain the temperature functions of the surface and center of the body

θs2 (τ) = θg1
0

 



1 − D − 





2
2 + Bi

 − D



 Φ (τ)




 , (45)

θcenter2 (τ) = θg1
0

 (1 − D) [1 − Φ (τ)] . (46)

In heat-engineering calculations, knowledge of the mass-mean temperature of the body

θ
__
 (τ) = (1 + m) ∫ 

0

1

θ2 (ρ, τ) ρm
dρ ,   θ

__
 (τ) = θg1

0
 



1 − D − 




1 − D − 

1 + m
3 + m

 
Bi

2 + Bi




 Φ (τ)





(47)

is sometimes necessary. To evaluate the exactness of the solutions obtained we carried out a numerical experiment
with the example borrowed from [26]:

m = 0 ,   Bi = 1 ,   n = 0.5 . (48)

The results of computations from the approximate (40)–(42), (44) and exact [26] solutions are presented in
Fig. 2 whence it is clear that the exactness of the solution proposed here is quite acceptable for engineering calcula-
tions. Any disagreement between them is easily compensated by the exceptional simplicity of the latter.

Fig. 2. Change in the dimensionless temperatures of the surface θs and center
of the plate θcenter, the gas temperature θg, and the temperature difference over
the cross section of the plate ∆θ heated in counterflow as a function of the di-
mensionless time for the data of (48): 1) approximate solution by the method
of equivalent sources; 2) exact solution [1].
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Conclusions. The approximate solutions obtained for the problems of heating of moving billets or ingots in a
gas counterflow and direct flow possess simplicity and exactness sufficient for practice (which has been confirmed by
comparisons to experimental data) and can efficiently be used for calculations of thermophysical and heat-exchange
processes in metallurgy and machine construction (continuous pusher-type furnaces, walking-hearth and walking-beam
furnaces, continuous furnaces of high-speed heating of metal, and heat exchangers).

NOTATION

A, area of the lateral prism surface, m2; a, thermal diffusivity, m2 ⁄ sec; a0s, a1s, and a2s, coefficients of the
algebraic equation on determination of the metal-surface temperature; Bi, Biot number; c and cg, heat capacities of the
metal and the gas respectively, J ⁄ (kg⋅K) or J ⁄ (m3⋅K); D, integration constant; f2 and f2

0, auxiliary functions for deter-
mination of the metal temperature; H1 and H2, half-thicknesses of the prism, m; h, integration constant; k, k1, and k2,
integration constants; L, billet length, m; l, dimensionless thickness of the warmed-up layer; m, auxiliary function for
determination of the metal temperature; m, combining shape parameter of a body (m = 0, plate, m = 1, cylinder, and
m = 2, sphere); N, ratio of the water equivalents of the metal and the gas in a two-dimensional problem; n, ratio of
the water equivalents of the metal and the gas; nm, refined value of the ratio of the water equivalents, combined with
allowance for the shape factor; p, integration constant; R, half-thickness of a plate or the radius of a cylinder (sphere),
m; r, running coordinate, m; Sk, Stark number, m; T, temperature, K; Tm′ , Tm′′, Tg′ , and Tg′′, metal and gas temperatures
at the inlet and outlet of the furnace respectively, K; t, time, sec; V and Vg, flow rates of the metal and the gas, m
and m3 ⁄ sec; x1, x2, coordinates of a body, m; α, coefficient of heat transfer by convection, W ⁄ (m2⋅K); β, dimension-
less thickness of the not warmed-up layer; δλ, change in the thermal conductivity, W ⁄ (m⋅K); ελ, relative change in the
thermal conductivity; ζ, ratio of the Biot and Stark numbers; η, prespecified exponent of completeness of the heating;
θ(ρ, τ), dimensionless metal temperature; λ, thermal conductivity, W ⁄ (m⋅K); µ, integration constant; ξ1 and ξ2, dimen-
sionless coordinates of the prism; ∆θ, temperature difference over the cross section; ρ, dimensionless coordinate reck-
oned from the center; σv, visible emissivity, W ⁄ (m2⋅K4); τ, dimensionless time (Fourier number); Φg, transcendental
function for determination of the gas temperature; Φg

0, the same but at the beginning of the regular step; Ψ, parameter
of integration. Subscripts and superscripts: v, visible; g, gas; comb, combustion; c, convective; r, radiant; m, material
(solid body); s, surface of a body; env, environment; center, center of a body; 1, inertial step of heating; 2, ordered
step; i, No. of coordinate of a body (i = 1, coordinate along the abscissa axis; i = 2, along the ordinate axis); 0, initial
value; ′ and ′′, inlet and outlet values respectively; *, completion of the process; 

_
 , average value.
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